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Abstract—This paper reports on a developmental approach
to the learning of communication in embodied agents, taking
inspiration from child development and recent advances in the
understanding of the mirror neuron system within the brain. We
describe a part of the ROSSI project which focuses upon gestural
communication in the form of pointing. We are examining the
idea that pointing may be a key step towards simple spoken
communication and exploring the internal representations that
may be formed during this process.

The possible developmental stages leading to proto-imperative
pointing actions in a robotic system are outlined, and how this
may be built upon to result in an understanding of two word
speech is discussed. The learning mechanism is based around
Piagetian schema learning whilst the developmental path follows
a mixture of Piagetian and Vygotskian theories.

Index Terms—Language Development, Human-Robot Interac-
tion, Embodied Cognition, Grounding of Knowledge and Repre-
sentations

I. INTRODUCTION

The developmental approach to robotics in which systems
attempt to mimic similar stages of development to a human in-
fant has so far had little application to the possible emergence
of communication and symbol grounding in robotic systems.

In this paper we explore the emergence of early gestural
communication as a side-effect of sensorimotor robot learning
and how this may be used to boot-strap simple linguistic
communication for robotic systems. While we take inspiration
from infant development we do not claim to be accurately
modelling human development.

The success of this approach depends upon the willing
co-operation of other social agents to aid the robot in its
learning. The robot is not imbued with any innate theory of
communication, so if it never experiences communicative acts
from other agents it will be unable to learn to communicate
itself.

This approach allows symbolic meaning in the form of
language to be strongly rooted in the sensorimotor experience
of the agent, with the various concepts involved in communi-
cation arising out of interaction with the environment and other
agents. The same learning framework is used throughout all
stages of development (although not all aspects of the frame-
work are used at all stages) allowing more advanced concepts
to be grounded in simpler ones from earlier developmental
stages.

A. Developmental stages

The following seven stages outline a possible robotic de-
velopmental progression leading from a “new born” state to
simple linguistic communication. This paper focuses mostly on
the stages leading to pointing gestures, with future work ex-
tending this to build up to speech. This progression, especially
in the latter stages, is based heavily upon that described by
Iverson and Goldin-Meadow [10], discussed further in section
II-A (communication).

1) Motor babbling: In this initial stage the robot has had no
prior experience of the world or of its own body. It performs
spontaneous motor actions in order to discover the properties
of its motor systems and its anatomical constraints.

2) Motor vision mapping: The movements learnt in the
previous stage are then mapped to the changes they create
in the robot’s vision system, this allows it to move its arm to
touch (or point towards) an object detected visually. While the
focus in this paper is on visual mappings this could equally
be applied to other sensor modalities.

3) Failed grasping leading to pointing: In attempting to
touch objects that lie outside of the work-envelope of the
robot it will incidentally perform what looks, to a human
observer, like a pointing motion. Through assistance from a
human observer, fetching the indicated object for the robot, the
robot’s representation of this action moves away from being
a direct attempt at manipulating the world towards an attempt
at social communication.

4) Recognising pointing in others: Using a goal directed
approach based on mirror neuron theory, the robot is then able
to learn to reciprocate, providing objects to humans (or other
robots) when they are indicated. This allows the structures
necessary for a simple give/take conversation to emerge prior
to the introduction of language.

5) Complementary one word speech with pointing: The
robot is then given auditory input (reduced to a text token
by speech recognition software) whilst it points at objects,
or whilst it sees a human or other robot point at an object.
This input is directly related to the object being indicated, for
example the word “ball” or “block”.

6) Supplementary one word speech with pointing: In this
stage the auditory input relates to the action being indicated
rather than the object itself. The pointing action has been used
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in the preceding stages as a request for the indicated object,
so the word “give” becomes associated with this action.

7) Two word sentences: Finally the learnt speech can be
combined to allow the robot to form and understand two word
sentences of the form “give block”, replacing the pointing
behaviour from the earlier stages.

II. BACKGROUND AND RELATED WORK

A. Communication
Vygotsky suggested that pointing develops out of a failed

grasping behaviour in which the child attempts to reach for
an object which is too far away, the parent interprets this as
the child pointing at a desired object and as such fetches the
object for the child, thus associating a new meaning with the
act of reaching for a distant object [27], [14]. Initially all social
meaning in this act is inferred entirely by the parent, the infant
is making a real attempt to reach the object and failing, but
through the actions of the parent the infant comes to associate
the same communicative meaning.

This has been classified by many researchers as proto-
imperative pointing or ritualised grasping, used by the child
to indicate an object of desire to a nearby adult, and typically
emerges at around 10-12 months. On average 3 months [5]
after the emergence of proto-imperative pointing the child has
also learnt to perform proto-declarative pointing which is used
to acquire joint attention on an object with an adult.

There is however evidence presented by Masataka [17] to
indicate that proto-imperative pointing and proto-declarative
pointing may follow different developmental paths, with proto-
imperative pointing actually arising out of index finger exten-
sion for the purposes of object exploration. The developmental
progress previously outlined for robotic systems currently
emerges proto-declarative pointing before going on to make
the leap towards treating this in a proto-imperative manner
in some of the later stages, while this may not be the exact
progression experienced by children it provides a simpler
mechanism for a robot to learn pointing gestures, albeit in a
less rich developmental context. In addition to this Tomasello,
et al. [25] show that infants may possess a much deeper social
understanding at this stage than previously thought, able to
communicate a great deal through pre-linguistic gestures such
as pointing.

Butterworth [4] provides various evidence supporting the
theory that gesture is nearly universal on the road to further
language development.

Iverson and Goldin-Meadow [10] describe the early devel-
opmental path of infants learning to communicate verbally.
They show that in most cases infants follow a consistent
progression from pointing to two word speech, as described
in the later stages of the previously outlined developmental
progression.

B. Neuroscience
The mirror neuron system was first discovered in the brains

of monkeys [7], [22] and later studies showed a similar system
at work in the human brain. A mirror neuron is a neuron

which fires both upon the execution of an action and upon
the observation of another agent performing the action. Each
mirror neuron is paired with a canonical neuron, however the
canonical neuron is only activated during the execution of
an action and not during its observation. This has prompted
speculation that the mirror neuron system may have been
crucial in the evolution of language [1].

Tettamanti, et al. [24] show that listening to action related
sentences can trigger a mirror neuron response in humans and
Kohler, et al. [11] have previously found that a noise related to
an action can trigger a response in monkeys. This adds further
weight to the idea that the mirror neuron system encodes
action content at an abstract level and that this content can
be activated auditorily. This suggests that language is strongly
linked to the sensorimotor system.

A study by Buccino, et al. [3] suggests that mirror neuron re-
sponses only occur for actions that the observer can duplicate.
For example humans watching a dog biting will show front-
parietal activity, while they will not when watching a dog bark.
This also shows that the mirror neuron system generalises to
different species, possibly suggesting that the goal of the action
has a much greater effect than the observation of the action
itself.

The goal directed nature of mirror neurons is further rein-
forced by a study by Umiltà, et al. [26] in which the neural
response from monkeys was measured when they observed
the experimenter grasping an object and when they observed
a mimed grasp with no object present. It was found that the
mimed grasp produced no response, while the real grasp did.
It was also found that if the view of the object was occluded so
the final stage of the grasp wasn’t visible then some response
was still produced, suggesting that the goal was being inferred
from the action.

Oztop and Arbib [19] hypothesise that the mirror neuron
system may have evolved to provide feedback for visually
directed grasping with the social usage being an exaptation1

occurring when this became applied to the hands of others.
Oztop, Kawato and Arbib [20] provide a computationally

guided review of mirror neuron literature and provide box
diagrams of a computational model called the MNS model.
Bonaiuto, et al. [2] have made attempts to extend this model,
creating a more comprehensive version titled MNS2. Small
sections of this model have been implemented and tested, but
the model as a whole remains largely theoretical.

C. Robotics and artificial intelligence

Drescher [6] suggests a constructivist approach to learning
based on Piagetian ideas using the notion of “schemas”.
Schemas are units of knowledge associating perceptions, ac-
tions and predictions. If the environment is perceived to be in
a certain state then taking an action associated with this state
should cause the environment to change to match the sensor
values specified in that schema’s prediction.

1An exaptation being the exploitation of an evolutionary adaptation to serve
a different purpose than the one it initially developed for.

2010 IEEE 9TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING 205



In its simplest form a schema consists of a set of pre-
conditions, an action and a set of post-conditions (often
represented in the form pre-conditions/action/post-conditions),
providing a basic forward learning model.

Holmes and Isbell [9] extended Drescher’s work to enable
the use of continuous value sensors (the original implemen-
tation was limited to binary sensors). They showed that it
was possible to model Partially Observable Markov Decision
Processes (POMDPs) via this mechanism.

Guerin [8] has since used this approach in a simple sim-
ulated robotic environment, but as yet little work has been
performed using this technique on a physical robot.

Perotto, et al. [21] introduce a Constructivist Anticipatory
Learning Mechanism (CALM), which makes use of a schema
based learning mechanism. The schemas are organised in a tree
hierarchy going from most general to most specific, making it
possible for the system to fall back on more general solutions
if a specific one fails or is unavailable. In contrast to Holmes
and Isbell this system took a property based approach to the
environment providing a more direct mapping between the
environment and the agent’s perceptions than a state based
environment.

Lee, et al. [13], [12] discuss the use of a Lift Constraint,
Act, Saturate (LCAS) loop to artificially constrain the inputs
to the robotic system and so reduce the complexity of the
learning required at each stage of the system’s development.
This approach is similar to the scaffolding [15] performed
by parents when helping children to learn in that the staged
constraints placed upon the system’s sensory input provides a
framework that guides the robot through its development. Once
there is little novel input being found at one stage of learning
a constraint is lifted, allowing the system to build upon its
knowledge from the previous stage whilst being exposed to a
more complex and detailed view of the world.

Marjanovic, et al. [16] introduce a motor-vision mapping
system that learns to perform pointing motions towards visual
targets. Our system differs from this in that the one presented
by Marjanovic has an explicit goal of pointing, while in
our system this behaviour emerges as a side effect of other
developmental processes occurring at the same time and as a
product of social interaction.

Steels, et al. [23] show that the concept formation process
of agents must be based on similar sensor input and result in
similar conceptual repertoires for communication to develop
in a population of agents. It also shows that once a lexical
system is in place it can overcome the randomness inherent
in verbal communication.

Oudeyer and Kaplan [18] explore the intrinsic motivation
of language learning rooted in play and curiosity, using a
framework based around Vygotsky’s zone of proximal devel-
opment [28] (although this is termed “progress niches” within
this system). It shows how an intrinsic motivation system can
allow a robot to self-organise its learning process.

III. HARDWARE CONFIGURATION

The hardware that the system is being tested on consists of
an Adept manipulator arm mounted on a rigid vertical back-
plane. The arm is configured to operate on a two-dimensional
manifold above a table upon which objects can be placed for
it to interact with, the manifold curves up at the extremities
tracing the outer limit of the robot’s work envelope allowing
for pointing towards distant objects. The arm has a single
“finger” as an end effector, which has four touch sensors
attached giving directional touch input. This end effector can
be used for interacting with objects by touching them and
pushing them around the work area and for communicating
by pointing at an object.

The vision system consists of an AVT Stingray F-046C
firewire camera, which provides a resolution of 780x580 at
up to 61 frames per second. This is mounted on a pan tilt
platform above the arm looking down on the work space.

This hardware setup can be seen in figure 1.

Fig. 1. The current hardware configuration.

Use of this learning framework in the context of a more
complex system, involving many more degrees of freedom, is
discussed briefly in section VII (future work).

IV. THE SOFTWARE FRAMEWORK

The system consists of two main components, the schema
memory and the developmental controller. The developmental
controller determines the goal of the system based on the
current excitation level and motivation, as well as handling
the reduction of complexity in sensory input based upon the
current learning stage. These sensor values are then passed to
the schema memory along with either an action or a desired
goal state, the resulting schema(s) are then executed and the
results stored for use in judging their suitability for future
tasks.

A. Schema learning framework
A similar approach to Drescher’s schema learning is used to

achieve the desired learning behaviour, albeit with a number
of modifications from Drescher’s original design to make
the technique more applicable to robotics. Unlike Drescher’s
binary system or Holmes and Isbell’s continuous value system
the schema framework makes use of discrete sensor values
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made up of sensorimotor fields which reduce the complexity
of the sensor input and motor output.

While a very symbolic schema representation has been
chosen here a neural implementation should give similar
results, however we believe that a more explicit symbolic
representation lends itself to easier analysis of the resulting
generated internal structures.

B. Schema chaining
The linking of pre-conditions and post-conditions from

different schemas (“schema chaining”) creates a traversable
network representing different world states and the actions
required to move between these states, as illustrated in figure 2.
Without schema chaining the robot’s interest in unreachable
objects would decrease as it failed to reach them. Schema
chaining allows for cases in which the feedback of an action
isn’t instantaneous to still be recognised as being useful. Thus
making the entire series of actions required to point at an
object, wait for another agent to move the object then touch
the object interesting to the robot, despite the reward (touching
the object) being at the end of the chain of actions.










 


  




Fig. 2. A high level example of schema chaining, allowing the robot to
gain access to an object that would otherwise be outside of its reach through
communication with another agent.

C. Tracking of Schema Probabilities
The schema framework keeps track of the observed proba-

bilities of the post-conditions of each schema, allowing it to
predict the most likely outcome. The storing of probabilities
for the likelihood of individual items, instead of the probability
of the schema as a whole being successful (as proposed by
Drescher) allows the system to select the best action for
achieving its target goal, regardless of the likelihood of less
interesting side-effects of the action. For example it makes
little sense for the system to care how likely it is that a
particular block is moved when the goal of the action is just to
move the arm to a specific location, the movement of a block
(or lack thereof) is merely an uninteresting side-effect in the
context of this particular goal.

D. Schema Generalisation
The system periodically attempts to generalise its existing

schemas, the specific schemas from which these generalisa-
tions arise are retained and when an attempted action does
not meet the expected outcome from a general schema a
new specific schema is created, allowing future attempts at
refining the generalisation with the added information from the
failed tests. When performing an action a specific schema is
preferred over a generalised schema if one exists that matches.

For example when seeing a number of specific schemas along
the lines of [object in field 5] / [move arm to field 5] / [object
in field 5, finger in field 5, touching] the system will generate
a general schema of the form [object in field $x] / [move arm
to field $x] / [object in field $x, finger in field $x, touching].

E. Mirror Neuron Influenced Schema Learning
To enable the schema system to mimic the behaviour of the

human/primate mirror neuron system it is split up in to two
distinct classes, traditional schemas, with pre-condition, action
and post-condition components, and “perceptual schemas”
which lack an action component and are used for observ-
ing the actions of another agent. These classes are linked
together when a perceptual schema and a traditional schema
have matching post-conditions allowing the observation of
other agents performing an action to be associated with the
observer’s motor schema for that same action.

Experiments with monkeys have suggested that their mir-
ror neuron system is largely dependent on the goal of an
action [7], [26], in that mirror neurons will fire when the
monkey observes the experimenter grasping an object, but
will not fire, or only fire very weakly, when they observe
a “pantomime gesture”, in which the experimenter performs
the same action but without an object present. The system
mimics this behaviour by using post-conditions as the linking
mechanism between the different schema classes, for example
the visual input of watching another agent move an object can
be associated with the motor behaviour performed when the
observer is themselves moving an object.

In addition to providing a mechanism for recognising the ac-
tions of other agents, this also provides part of the framework
necessary for spoken language. This will allow the linking
of auditory observations to actions and other observations,
helping the system move from a “motor-meaning” based
representation to a “symbolic-meaning” which is one of the
key differences between Piaget’s stage 3 and stage 4 infant.

F. Developmental controller
A control program has been developed that makes use of

the schema framework. The control system has two different
modes of operation, a “play” mode, in which it randomly
executes schemas based on their predicted excitement and
reward levels and a “task” mode, in which it can perform
more goal directed actions.

The resolution of the robot’s inputs are reduced by the
control program to speed learning. The possible joint con-
figurations are reduced to typically 200-300 combinations
depending on the robot configuration (referred to as the “motor
fields”). This is achieved by limiting the robot to the use of
two joints, each moving in 10 degree increments, a third joint
becomes accessible when the robot is at the outermost limit
of its two joint work envelope allowing the end-effector to be
moved outwards tracing a vertical arc to allow for pointing.
The visual system is similarly divided in to circular fields each
with a 10 pixel radius, referred to as “visual fields”, a specific
type of sensorimotor field. A new visual field is created each
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time the robot observes an object outside of its current fields,
with the centre point of this object forming the centre of the
field. The fields are initially discovered by the robot exercising
its previously learned motor schemas and observing its end-
effector entering the different visual fields [12].

The controller implements a Lift-Constraint, Act, Saturate
(“LCAS”) [13] based approach to staged learning. Additional
constraints are added to the robot’s sensory input, these con-
straints are lifted as the robot becomes habituated to its current
level of development. The point at which these constraints
should be lifted is determined by the system’s excitation level.
This excitation level is also used to decide which actions to
perform next, for example an action which would cause a
new schema to be created would be considered more exciting
than the execution of an existing schema. Whether an action
is executed or not depends on whether or not it is above
a certain threshold below the global excitation level. This
means that if most of the actions the robot is performing
are creating new schemas then it is unlikely to execute any
existing schemas, however once there are fewer new schemas
to discover it will begin to re-activate existing schemas with
a preference for those which have had the fewest activations.
Figure 3 shows the system reaching a plateau during the motor
babbling stage, once this has been reached the constraint on
the vision system is lifted and the robot begins to map visual
input to its existing schemas, the number of schemas does not
begin to rise again until the robot’s environment is made more
complicated through the introduction of wooden blocks for it
to manipulate. In addition to novelty-triggered excitation the
robot also receives a reward for successfully touching an object
(making such actions more exciting). This biases it towards
actions that may result in contact when an object is present,
this helps to speed learning by focusing the robot’s attention
on actions more likely to lead towards the desired behaviour.
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Fig. 3. As time progresses the robot discovers less novel situations requiring
new schemas and instead exercises existing schemas to test their reliability.
Once the developmental controller detects the saturation of this stage of
development the complexity of the input to the system is increased and the
schemas can be further refined.

V. REPRESENTATIVE SCHEMAS

A. Motor babbling
Initially very basic schemas are created with no context,

representing only actions.

Pre-conditions Action Post-conditions
Motor action
joint1=0.69
joint2=0.87
joint3=0

B. Motor vision mapping
Later the most basic visual result of these actions (the

end effector appearing in a different field) are added as
post-conditions.

Pre-conditions Action Post-conditions
Motor action End effector in field 7
joint1=0.69
joint2=0.87
joint3=0

C. Touching objects
Next the robot is given a few examples of touching objects

in different positions.

Pre-conditions Action Post-conditions
Object in field 3 Motor action Object in field 3

joint1=0.23 End effector in field 3
joint2=0.43 Touching
joint3=0

Once a number of examples along these lines have
been viewed this gets generalised, to give a schema which
represents touching an object in any position on the work
surface.

Pre-conditions Action Post-conditions
Object in field $x Target action Object in field $x

End effector End effector
in field $x in field $x

Touching

In these generalised schemas we see the use of “target
actions” replacing direct motor actions, rather than causing
a direct change in the robot’s configuration they represent a
target set of post-conditions that should be achieved (which
is a subset of the post-conditions of the main schema). This
allows the generalisation to occur across the pre-conditions,
post-conditions and action with consistent variables.

D. Pointing counter-examples
In the case of pointing the system attempts to execute

the above generalised touching schema but fails, generating
a specific counter-example. Specific schemas are always
preferred over generalised schemas if both fulfil the same
conditions. This allows the system to learn where its
generalisation fails and create schemas that work in those
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situations.

Pre-conditions Action Post-conditions
Object in field 203 Target action Object in field 56

End effector End effector
in field 203 in field 203

Due to the random, non-contiguous nature of the visual
fields the current system must learn each pointing location
individually. In future experiments the system will be tested
with a predefined contiguous visual space allowing the genera-
tion of a second generalised schema representing the pointing
space with a conditional observation such as ”$x > 134”,
where field 134 marks the shift from touching to pointing.

VI. POINTING MECHANISM

The controller takes the system through two learning stages
to create a mapping between the motor system and the vision
system. This mapping allows the robot to move its end effector
in to a desired visual field, which can then be used for allowing
it to interact with objects (both by physically touching them
and moving them around itself and by pointing at them for
communication).

The first stage of this process is akin to Piaget’s first stage
infant, the robot goes through a period of “motor babbling”,
where it exercises all possible joint configurations and creates
schemas representing these actions. It receives no feedback
from these actions, merely generating a base set of schemas
that abstract higher level schemas away from explicit joint
commands, allowing them to instead refer to existing schemas
as their action components.

In the second stage the vision system is made available to
the robot and it begins to associate visual context with the
existing motor schemas. This is similar to hand fixation in an
infant. This stage is visualised in figure 4. The robot executes
the purely motor based schemas it has learnt in the previous
stage and forms a new visual field whenever it sees its end
effector outside of any existing fields, it then adds this as a
new post-condition to the executed schema. The end effector
is detected via the vision system, potentially it will add any
changes in visible objects as post-conditions, however at this
stage of the robots learning no other objects are presented to
it.

Fig. 4. A visualisation of the visual fields, part-way through their discovery.

The systems operates primarily on the X-Y plane using 2
degrees of freedom, illustrated in figure 5(a). To enable the

robot to point at objects outside of its work envelope it is
able to slightly lift its end effector when at the furthest extent
of its normal range of motion, shown in figure 5(b). Both of
these planes are accessible to the robot throughout all stages
of learning, so it first learns to position its end effector in the
‘pointing’ plane prior to any objects being introduced for it
to point at as part of its random motor babbling and vision
mapping stages.

It is important to note that this is not giving the robot a
full 3D representation of the space it occupies as the robot
still effectively lacks accurate depth perception, however for
the purposes of this experiment that is unimportant and may
indeed be congruous with a child’s perception at this stage.
If similar operations were performed on a system with more
degrees of freedom the same outcome should be possible, with
the added benefit that the system would be able to point to
objects within its work envelope without touching them. We
only constrain the system to 2 DoF to greatly simplify the
lower level motor learning tasks.

Fig. 5. (a) Direct manipulation of objects is only possible in the X-Y plane.
(b) The robot’s motion is extended in to the Z’ plane allowing it to pointing to
distant objects. This is a simplified example, rather than having two distinct
vertical and horizontal planes the system operates on a manifold that curves
up at the extremities tracing the outside of the robot’s work envelope.

When first learning to point the robot views an object and
moves its end effector to occupy the same visual field, using
a generalised form of the schemas it has developed to allow
it to touch objects (and so receive a reward). However in this
case the schema does not successfully result in contact with
the end effector, instead it results (from the perspective of a
human observer) in a pointing motion towards the object. The
robot is receiving no reward when failing to touch the object,
however in the event that a human observer assists the robot
by moving the object closer it leads to a chain of events which
finally results in the robot touching the object and so being
rewarded.

A. Morphological implications

This approach raises certain morphological implications.
For a pointing gesture that a human would recognise to emerge
from this technique the robot in question must itself have a
roughly humanoid anatomy. Specifically it requires the robot’s
vision system to be positioned above the arm system looking
out in the direction of action. Additionally for the pointing to
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appear accurate the vertical distance between the vision system
and the arm should not be too great.

All current testing has been performed with humans with
prior knowledge that what they are about to view is intended
as a pointing gesture, it might be interesting to investigate the
effects this gesture has on people who do not already know
what to look for. The anthropomorphic characteristics of the
robot in question might play as large a part in this as the
quality of the gesture itself. However for now this is outside
the scope of the current investigation.

VII. FURTHER WORK

This paper deals primarily with the initial emergence of
pointing behaviour and the stages preceding it. We are con-
tinuing with the later stages in the developmental progression,
including the recognition of pointing from other agents and the
transition to linguistic communication. Work on these aspects
is ongoing.

We have implemented a neurally-inspired reaching/grasping
model for a 7 DoF tactile sensing robot hand (Schunk GmbH
& Co.) as part of the ROSSI project. The schema system is
in the process of being integrated with this so that a wider
range of possible actions and gestures may be investigated.
In this configuration rather than dealing with the vision and
motor system directly the schema system talks to an affordance
based memory which processes object features and determines
the appropriate joint configuration for grasping them, meaning
the schema system can continue to operate at a fairly high,
symbolic level while the affordance memory deals with the
low level joint configuration in more detail. This system also
has the capacity to recognise human hand positions via a
data glove, which provides an ability to imitate humans and
will allow us to determine more accurately when a human
is pointing at an object. Schema learning adds a capacity for
temporal reasoning and goal directed behaviour that is lacking
in the current affordance based grasp system.

There is also the potential for further work focusing upon
one robot having learnt this process with a human teacher and
then going on to teach a second robot in a similar manner.
This could be further extended to look at the implications on
a larger population of robots and how social meanings might
adapt due to slight changes in the teaching process from one
robot to another, following a similar methodology to Steels,
et al. [23].

In the current system the robot has no mechanism for
perceiving the presence of another agent as there is assumed to
always be a human present. If this facility were to be added
in the future it would allow the robot to discover in which
scenarios social acts are likely to be successful.
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