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Abstract—Infants demonstrate remarkable talents in learning
to control their sensor and motor systems. In particular the abil-
ity to reach to objects using visual feedback requires overcoming
several issues related to coordination, spatial transformations,
redundancy, and complex learning spaces, that are also challenges
for robotics.

The development sequence from tabula rasa to early successful
reaching includes learning of saccade control, gaze control, torso
control, and visually elicited reaching and grasping in 3D space.
This sequence is an essential progression in the acquisition of
manipulation behaviour.

In this paper we outline the biological and psychological
processes behind this sequence, and describe how they can be
interpreted to enable cumulative learning of reaching behaviours
in robots. Our implementation on an iCub robot produces
reaching and manipulation behaviours from scratch in around
2.5 hours. We show snapshots of the learning spaces during this
process, and comment on how timing of stage transition impacts
on learning.

I. INTRODUCTION

REACHING in humans requires the coordination of sev-
eral different muscle groups controlling the shoulder,

elbow, and wrist. Each of these requires relations to be
made between the range of proprioceptively sensed positions
and the muscle movements needed to reach those positions.
Furthermore, reaching to seen objects requires the space of
possible reach positions to be mapped onto the visual space
perceived by the eye, but this is not straightforward as multiple
arm poses may be available to reach each seen position [1].

These issues pose problems for reach-learning in humanoid
robots. Multiple kinematically dependent joints create large
learning spaces; visual- and joint-spaces are not topograph-
ically related, requiring some kind of transformation; redun-
dancy creates multiple joint poses for reaching to point targets,
and these cause difficulties in generating smooth reaching
trajectories without discontinuities. There have been many
studies and experiments on robot reaching, using both neural
models and AI based methods, e.g. [2], but very few perform
hand/eye coordination learning on complex kinematics in real
time without prior training.

We present an approach to reach learning in humanoid
robotics that draws heavily from the psychological literature
and is inspired by the development and behaviour of very
early infants. We identify several key factors that we consider
important principles to be included in our models:

• Motor babbling. This is spontaneous, internally moti-
vated, action that generates sensorimotor data during
infancy. We show that it is not random activity but is
functional in relating previous action to current and new

sensory-motor patterns. This has close links to the role
of play behaviour.

• Proprioception. Proprioception develops in the pre-natal
stages and, along with motor babbling, is likely to enable
learning of muscle control. Proprioception develops be-
fore vision and visual guidance in reaching, and is a key
factor in learning reaching motions.

• Proximal to distal development. Infant development fol-
lows a cephalocaudal pattern, with eye and head control
appearing before arm and torso. Furthermore, upper arm
control appears before forearm control and grasp learning,
and this sequence has important ramifications.

• Coarse to fine development. Infant abilities appear at first
coarse, and are refined over time. This relates to the
sensory resolution and motor control abilities, as well as
to the development of skills. These embedded constraints
are central to developmental growth.

We view developmental sequences as the key to skill learn-
ing, and various other works show close relevance. Grupen
recognised the cephalocaudal progress of infant growth [3]
and used this in skill development in robotics [4], the ITALK
project has produced a robot development map [5] similar
to [6], and Asada and colleagues are researching into a
range of robotic models with strong emphasis on human
cognitive growth [7], including the earliest stage possible; fetal
development [8]. Others report on developmental approaches
to reaching, including staged release [9], and experiments with
proximo-distal maturation show that developmental constraints
produce better learning [10].

In the following sections we will describe the development
of reaching in infancy, our approach to implementing a similar
sequence of development on our robotic platform, and give a
series of snapshots showing the data structures built through
the learning process as the robot develops reaching behaviour.

II. A DEVELOPMENTAL MODEL

In the first few months from birth infants orientate to sounds
and attractive visual stimuli. They make ballistic attempts to
reach towards stimulating targets but usually fail to make
contact. This “pre-reaching” behaviour leads on to successful
contact with objects at around 15 weeks [11], [12]. During
this stage it seems that infants do not view the hand during
reaching and vision is only used for target location [13]. This
means that proprioception is important for arm guidance and it
seems that proprioceptive development in the womb provides a
more mature, although possibly incomplete, spatial framework
by the time visual space is first experienced [14].

Limb movements are jerky for much this early period. The
cerebellum appears to be responsible for the production of
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smooth action but is very under-developed at birth. This is
believed to be the cause of the marked under-damped oscil-
lations of the arm, which gradually reduce as the cerebellum
matures (over the relatively long period of 2 years).

Before 4 months there is no independent control over the
fingers and grasps are formed only after contact as haptic
experiences. Hand control for grasping develops later than
reaching. This is an example of the cephalocaudal direction
of development that is so prominent in infants [6]. It is also
seen in early reaching, which involves trunk and shoulder
movement, but with fingers locked. This principle of distal
freezing of motor systems is an important feature and is
a significant way of solving the problems associated with
multiple and redundant degrees of freedom.

Only after 8 or 9 months does object size really affect
approach and grasping. From this point the visually sensed
object size modulates the hand aperture. Also at this age, the
shift from proximal to distal control of reaching is started. It
seems this is not solely due to maturational change but the
trajectory of development depends heavily upon experience
and patterns of behaviour [13], [15].

Another contribution to the mastery of arm control is the use
of stereotypical motor patterns that have the effect of reducing
the number of degrees of freedom during the early stages. By
close coupling groups of muscles it is possible to reduce the
number of control variables while producing a set of effective
space covering actions [16]. It has also been observed that
humans have a tendency to avoid extremes in arm configu-
rations, probably because such positions considerably reduce
the options for the next move. Similarly, it has been shown
that people adapt their initial pose and grasp for the final arm
configuration in an action task [17]. For example, subjects
will choose a grasping configuration on a handle such that
their hand ends up in a non-awkward position when releasing
or using the object. These considerations should influence
our model so that any constraining or cost function applied
to reduce the DoF problem should be applied to the final
configuration, not the starting configuration.

From these findings we can summarise some key points:
A view of the hand is much less important when reaching
than when grasping objects or other manipulations. Grasp
learning follows successful reaching and involves learning
object properties (affordances), finger control, tactile and other
experiences. For earlier infants, who don’t have much grasp
control (i.e. use of fingers) proprioception may provide enough
information for reaching actions.

III. EXPERIMENTAL DESIGN

We believe the developmental timeline for infants is an im-
portant tool for modeling and recognize the various constraints
that pertain at different levels of development [6]. In the
following sections we briefly describe how we use constraints
to model the stages described in the previous section, and the
resulting behaviour on the iCub. Due to space constraints the
implementation details for each stage are left to the referenced
papers, although the results described here are unique both
in themselves and in describing the complete reach-learning
process.

Following our earlier experiments, we allow eye/head co-
ordination and eye saccading to develop independently of the
construction of a proprioceptive mapping of limb space. The
eye saccade learning is as described in detail in [18] and
involves head movement compensation. For the growth of the
proprioceptive reach space we arranged that the arm would
have restricted movement on the joints for elbow and upper
arm rotation, and a “rest” position was defined with the arm
retracted and the hand near the head. A reach action consisted
of a movement from the rest location to a specified spatial
target field on or above the table surface in front of the robot.
A range of target locations were generated for the volume of
space around the table by motor babbling in the proprioception
learning stage, (this can be done in simulation and then the
locations can be transferred if motor babbling is considered
unsafe on unconstrained physical hardware).

When sufficient experience has been obtained to build the
gaze and reach maps the independence constraint between
vision and proprioception can be lifted. This facilitates the
interaction of hand and eye in behaviour known as hand
regard activity. This behaviour helps by coordinating visual
gaze space with the proprioceptive space of the arm/hand. Up
to this point progress has been very similar to our previously
described experiments [19], [20], [21].

At this stage of development the robot is able to reach to a
gaze point and look at a hand position. But we notice that the
gaze space is a much larger space than the reach space. This
is mainly because the maximum reach is determined by the
arm length which is much less than the visual range. Another
important point is that the reach and gaze geometry are closely
coupled in the sense that they are both grounded or referential
to a point on the body centre line somewhere near the neck.
This means that, regardless of the configuration of the rest of
the body below the shoulders, if a stimulus is seen to be within
the reachable range of the gaze/reach mappings then it can be
reached. Conversely, if a stimulus is unreachable (i.e. seen
but has no mapping into reach space) it can become possible
to reach it by moving the head/shoulders/arm into a position
where it becomes reachable. This effect can also stimulate the
recruitment of locomotion to achieve distant desirable goals.
However, as locomotion is not yet available, we notice that
torso movement (which develops early, [11]) can be used to
extend the reach space.

For the iCub, torso movements are available as tilt (for-
ward) and rotation (about the body centre line. A torso/visual
mapping can be constructed by noting the effect of torso
movements on the gaze point. This process is exactly the same
as the head/visual mapping which provides gaze compensation
for head movements, and is described in [18]. Now, with a
torso map developed, it is possible to reach to a target in a
two step process: use the torso map to bring the target into
a reachable location in gaze space; then use the gaze/reach
mapping to generate a reach action.

The gaze space is an approximately spherical system with
variables H,V and D, for left-right, up-down, and distance
relative to the centre of the head. An arm configuration can
be defined in terms of an n valued vector, K, for the n
joint angles. Then the reach space is populated with a set of
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configurations, Ki, each mapped into a gaze point, [hividi].
If motor babbling has produced a sparse but even coverage of
the reach volume then we can find a Kj for an unmapped gaze
point [hjvjdj ] by interpolation between two near neighbours.
Assume that [h1v1d1] and [h2v2d2] are local to [hjvjdj ] and
each are mapped, to K1 and K2 respectively. Then distance
metrics can be computed between the vectors K1 and K2 and
between K1 and Kj and the resulting interpolation ratio is
then applied to the elements of K1 and K2 to obtain a new
configuration Kj on the basis of linear piecewise interpolation.
If the new reach location proves to be inaccurate then its
configuration can be stored, together with the mapping to
[hividi], to increase the population density of the reach space.
Eventually there will be sufficient K points in the reach space
that linear interpolation is effective everywhere but the space
is still relatively sparse.

As described in section II, very early reaching behaviour
arises before any hand control has been established and so
we set the hand to be normally open with the fingers flat.
If the front of the hand makes good contact with an object
then an automatic finger close is executed. This provides a
kind of grasp reflex which is maintained, even while the iCub
performs other actions, and is only released by removal of the
object, either by accident or external interaction. Unlike object
contact, the release is not a significant sensed event.

As a result of the earlier hand regard behaviour the system
is able to spatially correlate visual stimuli with hand positions
and vice versa. Thus, when an object is presented for the
first time it is likely to be detected in periphery vision and a
saccade will bring the object to fixation. This fixation location
in gaze space will stimulate a corresponding target for a
reaching action and a reach will be initiated. At this early
stage it would be expected that some reaches would miss the
object and others would contact it. Some of those that make
contact will also grasp the object through the grasp reflex. In
accord with infant stereotypical motor patterns [22] the reach
actions are completed by a return of the arm to a “home”
or quiescent location in proximity to the body. (Such home
positions are equivalent to the mouth, as mouthing is almost
a default behaviour for any object acquired by the hand.)

After a period of early reaching, experience will have been
gained on “disturbing a stimulus” (by moving it or knocking
it completely out of the environment) and “holding” (with
kinesthetic and possibly tactile signals). The next constraint to
be lifted is the reflexive grasp and we do this by allowing the
fingers to close to a given aperture and by activating a “hand
empty” sensor. The hand now has potential for more control;
smaller movements of the fingers can be related to visual
movement or properties of objects and better grasps can be
produced by matching the aperture to objects. Better approach
and poise are also now within new control possibilities. Also
the release of a grasped object now becomes an experienced
event and so this allows objects to be dropped deliberately
and thus the sophisticated skill of moving an object from one
place to another is now available to learn.

In the system as described, the gaze and reach spaces record
the locations of stimuli (objects) and their various properties.
This is in effect a short term memory which remembers objects

during saccades and reaches but a decay function ensures that
after a long period without attention such recent sensory events
are erased. Consequently some form of memory is required to
record actions and experiences that have proved useful and
can be recalled in relevant situations. We have implemented
a schema learning mechanism which provides memory and
motivation functions [23]. A schema encodes the context in
which an action may be performed together with the result of
that action. These schemas can then be chained together to
carry out sequences of actions (for example, reaching toward
an object, grasping it, then moving it to a new location and
finally releasing it). Schemas are selected for execution based
upon an intrinsic motivation algorithm which considers the
novelty of currently experienced stimuli combined with their
similarity to previous experiences, resulting in actions being
selected which are likely to elicit new information about the
world. Example schemas are shown in the next section.

IV. EXPERIMENTAL RESULTS

Following the cephalocaudal development of the infant,
the robot begins by learning the eye movements required to
saccade to a visual target. Learning is conducted through
our developmental framework using constraints to restrict
learning of sensorimotor mappings [24]. Fig.1 shows the learnt
mappings between sensor and motor spaces for making eye
saccades, built up by a process of motor babbling. When a
stimulus is received on the retina, the mapping between the
point of stimulation and the associated motor movement is
followed, triggering a saccade that fixates on the stimulus.

Next, a constraint is released enabling the learning of neck
control. This could be a physical constraint, such as the lack
of sufficient torque in the neck, or an emergent constraint,
such as the prerequisite for accurate eye saccades as a basis
for learning head movements [25]. Fig. 2 shows the learnt
mapping between neck muscles and the impact of these on
the visual space.

The gaze space is represented by combining the motor maps
from the eye and neck system. Each field in the gaze map
corresponds to a relative pan and tilt movement required to
fixate on that field, and contains the eye and neck movements
required to do so. When performing a gaze shift to a target, the
proportion of movement allocated to each system is governed
by the relationship given in [26]. Although the eye and head
joints are not co-located, our experiments indicate that treating
them as such gives sufficient accuracy when performing gaze
shifts. Depth in the gaze space is treated separately, and is
calculated by the vergence angle between the two eyes.

The ego-centric gaze space shares a reference point, the
torso, with the reach space. This supports the mapping of
reaches to gaze direction, but also provides a space in which
to represent the robot’s environment. We use this space as
a visual memory as well as for learning hand-eye coordina-
tion [21].

Reaching movements are mapped onto the gaze space using
a combination of motor babbling and hand regard. Following
the literature on early infant reaching, constraints are imposed
on the type of reaches possible. In the early stages, the
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(a) Retinal map (b) Eye motor map

Fig. 1. Maps for eye saccade control (best viewed in colour). Coloured circles indicate learnt fields over which stimuli or actions (in the case of the visual
and motor maps) are considered identical. Matched colours indicate links, or mappings, between maps. A stimulus in a visual field will trigger the associated
motor movement, causing the eye to saccade to the stimuli.

(a) Retinal map (b) Head motor map

Fig. 2. Maps for head contributions to gaze shift. Motor movements are mapped to corresponding shifts in the visual space.

elbow joint is fixed, and “swiping” movements are made
using the joints in the shoulder. Reaches are initiated from
a “pre-reaching” pose with the hand near the head. This
enables the robot to reach to objects on a line similar to
the gaze direction, and limits collisions with other objects.
The gaze-reach mapping is between two 3-dimensional spaces
corresponding to shoulder proprioception and the gaze space.
Fig. 3 shows a 2-dimensional projection of this mapping.

With constraints limiting elbow movement, the range of
reach distances is very limited. The infant overcomes this by
using movements of the torso to bring objects into range. Fig. 4
shows a mapping of torso rotation to a shift in gaze position.
By rotating the torso the shoulder can be moved closer, or
further, from objects to alter the distance for reaching. As
the reach postures are mapped to vision through the gaze
space, movement of the torso has no impact on eye-hand
coordination.

At this stage, the robot is capable of gazing to objects,
orientating itself to bring the objects into reaching distance,
and making reaching motions toward them from the “pre-
reaching” position. Using the schema learning mechanism it
now starts to build composite actions from these beginnings.

When the robot sees an object it checks for schemas excited
by that stimulus and finds that the most excited schema is one
in which it remembers seeing its own hand in the location the
object now occupies (Fig. 5a). Upon executing this the robot
finds that when an object is present in the location it reaches
its hand towards it receives an unexpected touch sensation.

Pre-conditions Action Post-conditions
Reach to 35,-66 Hand at 35,-66

(a) Initially excited schema

Pre-conditions Action Post-conditions

Obj. 1 at 35,-66
Obj. 1 at 35,-66

Reach to 35,-66 Hand at 35,-66
Touching obj. 1

(b) Extended schema with new information

Pre-conditions Action Post-conditions

Obj. $a at $x,$y
Obj. $a at $x,$y

Reach to $x,$y Hand at $x,$y
Touching obj. $a

(c) Generalised schema

Fig. 5. The creation of a schema representing the act of touching objects

A new schema is then formed to represent this knowledge
(Fig. 5b), which can then be generalised in to a form which
represents reaching out and touching objects in any position
(Fig. 5c).

The new touching schema is executed a number of times
due to the novelty of the experiences involved. However after
a short while the excitation drops below that of the next most
excited schema, which in this case is the grasping schema.
The grasping schema is excited by the memory of the robot
touching its own hand when performing a grasp with no
objects present, which it is reminded of by the touch sensation
it receives from the object it has reached towards (Fig. 6a).
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(a) Gaze map (b) Motor map

Fig. 3. 2 dimensional projection of reach maps in gaze and motor space

(a) Gaze map (b) Torso motor map

Fig. 4. Maps for torso rotation impact on the gaze direction

Pre-conditions Action Post-conditions
Grasp Touching hand

(a) Initially excited schema

Pre-conditions Action Post-conditions

Obj. 1 at 35,-66
Obj. 1 at 35,-66

Grasp Hand at 35,-66
Touching obj. 1 Holding obj. 1

(b) Extended schema with new information

Pre-conditions Action Post-conditions

Obj. $a at $x,$y
Obj. $a at $x,$y

Grasp Hand at $x,$y
Touching obj. $a Holding obj. $a

(c) Generalised schema

Fig. 6. The schema memory learns to go from touching to grasping objects

Executing this whilst touching an object results in the robot
successfully grasping the object and receiving the sensation of
holding an object. A new schema is then created to represent
this new information (Fig. 6b). As with the new touching
schema this grasping representation can also be generalised
as shown in Fig. 6c, which represents the act of grasping an
object in any location.

In the last stage of our current implementation the touching
and grasping schemas can be chained together to form a plan
of action which allows the robot to reach towards and then
grasp an object at any location (Fig. 7).

This completes the process of attaining visually elicited
reaching. Learning is driven by novelty in the early stages,
giving way to goal directed behaviour only when suitable
goals have been found through ‘play’. The sequence shows

Pre-conditions Action Post-conditions

Obj. $a at $x,$y
Obj. $a at $x,$y

Reach to $x,$y Hand at $x,$y
Touching obj. $a
���������9

Pre-conditions Action Post-conditions

Obj. $a at $x,$y
Obj. $a at $x,$y

Grasp Hand at $x,$y
Touching obj. $a Holding obj. $a

Fig. 7. Chaining of touching and grasping schemas

cumulative learning of skills from sensorimotor mapping to
action planning. A key indication of the power of this approach
is that the whole sequence described here can be run on the
iCub robot in just 2.5 hours.

A critical issue is the scheduling of the release of con-
straints. In connected work we have investigated how the
timing of constraint release impacts on learning of gaze control
[18]. Those results showed a trade off between timing of
constraint release and the rate of learning. If there are no
sequencing constraints, then sub-systems are allowed to learn
in parallel and learning is found to be slow, due to added
physical and computational complexity. Correspondingly, con-
nectivity between maps is sparse. If constraints remain in
place for a prolonged period, learning of the unconstrained
system is initially fast and connectivity is high, but at the
expense of improvement in the constrained system. However,
learning saturates as the space becomes increasingly explored.
By releasing the constraint on a sub-system at an intermediate
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time, learning of mappings in both systems is increased.
Preliminary results suggest that the optimal time to release
a constraint to maximise learning depends on the interaction
of the codependent learning rates of the systems involved. This
is a matter for further investigation.

V. CONCLUSIONS

We have described the nature of development of reaching
in human infancy, and how stages in the development provide
useful insights for learning to reach in humanoid robotics. We
have taken these ideas and implemented them on a robotic plat-
form using our framework for developmental learning. Results
show snapshots of the sensorimotor mappings and schemas
learnt along the developmental trajectory in a cephalocaudal
manner from making eye saccades to reaching and grasping.
The work shows the value of several principles we draw from
the developmental literature.

Motor babbling is a key element in learning. The limited
abilities of the infant mean that goal-driven learning is absent
or restricted, and intrinsic activity, in the form of motor
babbling, plays a significant role in early development. But
babbling, which has close links to play behaviour, is more
than random behaviour, generating vital sensorimotor data and
rehearsing prior action and experience.

Proprioceptive space is an important and under-rated per-
ceptual substrate in early learning. Before vision has developed
sufficiently, proprioception provides the main feedback on
limb positioning. This allows limb movements to be learnt,
to some extent, prenatally. Once vision has matured, motions
learnt proprioceptively can be refined with visual feedback.

Certain abilities, such as gaze control, must be refined be-
fore others, such as reaching. This is manifest in the cephalo-
caudal sequence of development. Furthermore, constraining
distal joints until control over proximal ones has been learnt,
structures the learning task. In this case, by restricting motion
at the elbow joint the robot is able to learn shoulder control
with a straightforward mapping.

The resolution of sensor and motor abilities in the infant
are initially coarse, and gradually become finer with neural
development and learning. Viewing this phenomena in terms of
constraints allows us to reflect the developmental trajectory in
robotic systems. As the robot masters coarse abilities, relevant
constraints can be lifted to allow further refinement.

Using these lessons from human development we have built
a robotic system that learns to reach in a way that overcomes
many of the hurdles to humanoid reaching. Our experiments
can be seen to expose some of the “logic” that appears to
be behind the infant’s development in early sensory-motor
learning. We believe this continued approach will offer further
valuable models and solutions for robotics.
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